ICD-2

Cryogenics Overview

Jay Theilacker

Functional Requirements

- ICD-2 Cryogenic system supports operation of Linac in CW
- Maintain elliptical cavities and spoke cavities at 1.8 K under normal operation
- Provide shield flow at multiple temperature levels
- No longer supply liquefaction flow for power leads (conduction cooled)
- Allow cool-down and warm-up of limited-length strings for repair or exchange of superconducting accelerating components
- Protects superconducting RF cavities from over pressurization beyond the component's MAWP during fault conditions.

Low Energy Linac

- Components are cooled by 2-phase(2∅) He at 1.8 K
- Single string of SR Cryomodules
- String contains 17 Cryomodules
 - 4 x SSR-0 cryomodules
 - 2 x SSR-1 cryomodules
 - 3 x SSR-2 cryomodules
 - 8 x TSR cryomodules

High Energy Linac

- Revising and resizing the TESLA cryogenic concept
- Saturated He II cooled cavities @ 1.8 K
- Helium gas thermal shield @ 5 8 K
- Helium gas thermal shield @ 40 80 K
- Single riser from dressed cavity to 2Ø line (needs to be larger)
- 2Ø line (liquid helium supply and concurrent vapor return) connects to each helium vessel (needs to be larger)
- 2Ø line connects to gas return once per CM (needs to be larger)
- Warm-up/cool-down line connects the bottoms of the He vessels
- Helium supply to 2Ø line via JT valve once per Cryo String
- Two Cryo Strings
 - 11 S-ILC (β =0.81) cryomodules
 - 9 ILC (β =1) cryomodules

ICD-2 Heat Load

Project X ICD-2						
	1.8 K		5 to 8 K		40 to 80 K	
	Static	Dynamic	Static	Dynamic	Static	Dynamic
Heat Load Estimate [W]	216	2,503	2,317	951	17,537	25,801
Static to Total Ratio	8%		71%		40%	
Total Heat Load Estimate [kW]	2.7		3.3		43.3	
Uncertainty Factor	1.3		1.5		1.5	
Overcapacity Factor	1.2		1.2		1.2	
COP [W/W]	940		200		20	
4.5K Equivalent [kW]	26.9					
Plug Power [MW]	6.7					

Conceptual Layout

ICD -2 Issues

- Issues that need to be addressed by RD & D program:
 - Cryogenic Distribution and Segmentation
 - Pipe sizing for high flow rates and heat transfer
 - Capital and Operational Cost Optimization
 - Optimum Operating Temperature
 - Heat Load Analysis
 - Testing Infrastructure
 - Cryomodule testing at CW changes New Muon Lab testing requirements. Input from Workgroup participants would be beneficial.